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I. INTRODUCTION

The Spectral Theory of Diffraction (STD), which was introduced recently

by Mittra, Rahmat-Samii and Ko (1], has been found to be a useful tool for

solving high-frequency diffraction problems. The concepts of STD together

with its scope, advantages and disadvantages can be found in a number of

publications [1], [2] which have appeared recently in the literature. This

theory is founded on the concept that the scattered field is related to

the Fourier transform of the induced current on the scatterer and that

the ray description of the scattered field is derivable from the spectral

representation via an asymptotic evaluation of the integral form of this

representation.

* The canonical geometries of the semi-infinite half-plane and the wedge

play important roles in the development of the various theories for high-

frequency scattering. The Sommerfeld half-plane solution has been extensively

studied [2] in the context of STD, and the STD formalism for the half-plane

diffraction has been applied to planar and curved strips. In this paper,

we extend the STD concepts to the geometry of the wedge. We show how the

contour integral a la Sommerfeld for the wedge problem can be manipulated

to yield a transform representation for the scattered field in terms of

the currents flowing on the two faces of the wedge. We also show that it

is possible to derive a uniform asymptotic solution for the total field,

one which is valid for all observation angles. The uniform solution so

derived is found to be identical to that conjectured by Deschamps and

Lee [6].
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II. SOMMERFELD SOLUTION TO THE WEDGE PROBLEM

The starting point of our analysis is the Sommerfeld solution to the

problem of plane-wave diffraction by a wedge. Let a perfectly conducting

wedge, with the faces defined by the angles * - 0 and 0 - $, be illuminated

by a plane wave

u -e (1)csO-1

incident from the 0' direction. (See Fig. 1.)

pU

Figure 1. Geometry of the wedge-diffraction problem.

The angles involved have the following ranges:

3 < t < 21; 0 < <0V; 0 < <

The total field u is subject to the boundary condition

u - 0 on the wedge surface, for u - E (E-wave), or (2a)z

au
- 0 on the wedge surface, for u - H (H-wave). (2b)z

e time convention is implicit throughout.
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This field, as derived by Sommerfeld, can be represented in the form [3]

u(p, ) w0 ) - w(p,;-'), (3)

where

- f e-ikcos (a-0) d(2w, A 1 ' -ei l a - *)  (4)

is the Sommerfeld integral defined on the contour A in the complex a

plane (Fig. 2), and Q - . The upper (lower) sign in (3) applies to the

case of the E-wave (H-wave).

Rea

Figure 2. Contour A A , + A2 in the complex a

plane. The shadowed areas indicate the

convergence regions for the Sommerfeld

integral w(p,0;0).

III. ALTERNATE FORM OF THE SOMMEFELD INTEGRAL w

In this section we derive an alternate form of the Sommerfeld integral

w, one which would allow us to express the scattered field in terms of the

transform of the induced current on the two faces of the wedge.
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We begin with the integrand for w given in (4) and note that the poles

are located on the real axis in the a plane at the points

- + 2pO, p 0, i, -2,

Since 0 > r, only one of these poles can appear in the region (-w + *,
w + o). This implies that only the incident and one reflected wave can reach

the given observation point (p, ). The next step is to replace the contour

A by a sum of the contours K and L (= 1 + L2), as shown in Fig. 3.

A

•oRea

Figure 3. Contours K and L (L + L2) in the a plane.

Because the contours L1 and L2 are separated by 27, and traverse in opposite

* directions, we can write

ff(a)da - -ff (a+2w)d.
L 2  L

11
m Consequently, the integral along L can be replaced by one along either L

or L2. Next, let us turn to the integral along the contour K. The contri-

bution to w from the integral along K may be found by evaluating the residue

at the pole a . Incorporating these manipulations in the expression for w
I p

given in (4), we get

UJ
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w(p,;*) En(w-[a -f])eitpcos(ap - 0 + I(p,; ), (5)
p p

where

i r e-ikpcos(a- ) 9 singn da or (6a)
- 27 L cosn(a-+W)-cos 'r(

f e-ikpcos(a- ) n sinnli da (b
2r L cosQ(a-*-W)cosfaW , (6b)

L2

and n(x) is the Heaviside step function. The sum in (5) is extended over

all p's for which the inequality ir-[a -41>0 holds at least for some value
p

of lying in the range 0 < < 0.

Simple asymptotic considerations reveal that the sum over p in the

0r.h.s. in (5) is of the order of (k0) as kp- -, whereas the integral I is

of the order of (kp)-1 2 . Hence the representation (5) can be useful for

high--frequency asymptotic analysis. Also, it will be seen from the following

that the integral I can be easily converted into Fourier integral form.

Both of these features will be taken advantage of in subsequent sections.

IV. RAY-OPTICAL REPRESENTATION OF U

When 0' and * lie in the range 0 < *' < w, 0 < < 4, only one pole

i r r
a - aO of w(p,4;') and two poles a - a0 , and a - a1 of w(p,O;-O') can

satisfy the inequality -+P4<a<-4+. These are
i

a *', due to the incident wave,

r

ar, 24'- 0 ', due to the wave reflected from the wall 0= .
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Thus, we find from (5)

w(p, ;f') ln(I+"'-)e -ik~c os (0'- 0) + I(p,0;0'), and (7)

= n[ (+)]eiO( ) + n[2-('+)-e

(8)
+ I(P,0;-W').

Substituting (7) and (8) into (3), we obtain the representation for u

which is amenable to ray-optical interpretation. Indeed, the first term

in (7) and first two terms in (8) are of the order of (kp) as kp- , and

represent the GO approximation to the total field. The remainders in (7)

and (8), represented by I(0') and 1(-0'), respectively, are of the order

of (ko)-1/2 and represent the field diffracted at the edge of the wedge (for

details see [4], [5]).

V. CONVENTIONAL REPRESENTATION OF U

The representation for the total field u, given in (3), (7) and (8),

contains terms which are discontinuous functions of the observation angle

. though the total field is continuous. It is useful to seek an alternate

representation in the context of STD, which consists of continuous functions

*41 only. This is accomplished by deforming the contour L such that the poles

i r r
a0' M0 and a1 do not cross the new contour as * and 0' are varied. We

choose this deformed contour to be L< for *< w and L> for * > n. Both of

these contours are shown in Fig. 4.
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Rea Rea

Figure 4. Contours L< (4<w) and L> (O>ir) in the a plane.

With such a choice for the contours, the pole ai is always located inside

the region bounded either by L1 and L2, or by L> and L>, and the poles aO

and a1 always appear outside of the regions.

The total field u can now be expressed as

i su -u + u , (9)
i s

where u and u are, respectively, the incident and scattered fields. The

scattered field is defined by the formula

s . i e-ikpcos(a-0)W(a) da, (10)
212

4 where

L <A I

X - sgn Y, PX > (lOa)

and W(a) is defined as

W(a) - Qsin {[cosn(a-+A-r)-cos] - +- [cosSI(a+*+XW)-cos-] 1; (11)

the upper (lower) sign corresponds to the case of the E-wave (H-wave).

:I
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Our choice of L1 and L2 for the contout ' A is arbitrary in that we

are free to use either L< or L2 for P and L1 or L2 for P+, with appro-

priate choice for the corresponding integrals.

In the literature, the expression given in (9) is referred to as the

conventional representation. (See reference [1].) We proceed next to

find the Fourier transform representation of the scattered field. This

is described in the following section.

VI. FOURIER TRANSFORM REPRESENTATION OF THE SCATTERED FIELD u
s

Let us introduce the following change of variables:

w-kcosa; vMK -M-Aksinot; x-pcos ; y-sin ;

(12)
k -kcos '; k u-ksin0'.
x y

For v, the branch of the square root is chosen such that Im v>O.

Since the transformation w + a is a multiple-valued function, the two

contours L< and L> in the a-plane transform into a single contour C in

the w-plane. The resulting contour in the w-plane is shown in Fig. 5.

* Rew

Figure 5. Contour C in the complex w-plane (image of

L< and L> in a-plane).
1 2

wI -- k, w2 - -(cos2fkt + sin2Oky)

Thus the scattered field u , as defined by (10) and (11), becomes
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s 1 -i £ e i v l y l

u =2- f dw e 2v 2V(w) (13)c V

where

V(w) - W(a). (14)

If we define the direct and inverse Fourier transforms for the functions

u(x) and U(w) as

b' +iAU(w) f i wx u(x) dx; u(x) e U(w) dw, A>0, (15)

21r f e15

then a comparison of (13) and (15) reveals that us in (13) has the form
iv yI

of an inverse Fourier transform for the function 21v 2V. We observe

eivly2
that e is the Fourier transform of the free-space Green's function21v
i H (kR) and that the scattered field has been expressed in the form of
40

a convolution integral involving the Green's function g and the surface

current J. These integrals take the form

uS(r) - -iwu f g(r-r')j(r')dr' for E-wave, and (16a)
s

u S(r) - - f g(r-r')J(r')dr' for H-wave. (16b)-- an
s

Returning now to (13) we deduce that the function V(w) is proportional to

the Fourier transform of the current flowing on the surface of the wedge.

This conjecture will now be verified.

VII. ALTERNATE FORMS FOR THE SCATTERED FIELD

In this section we derive alternate forms for the scattered field which

can be interpreted in the context of the spectral domain. We consider the

E-wave and H-wave cases separately.
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7.1. E-Wave

From (16) it follows that the scattered field u8 can be represented as

a summation of two terms, viz.,

us M us + u1 (17)

where

u(r) -- iwu f dx "i H01 (kIr-_I)j(x), (18a)
0O 4 000

and

S H(1) (lR~ I) ibul (r ) =-iwu f dxI 1 HlkI- , i(Xl)"(8b

The two terms in the r.h.s. of (17) may be associated with the two currents,

1 au(x,v-0) (19a)JO -~oX iWU ay (1a

and

1 aU(X l'Yl'O)

jl (x1 ) - 1y, u y 0 (19b)

which flow on the two surfaces of the wedge defined by - 0 and * -

respectively (Fig. 6).

Y/Y

Y00 Jo(X) x

Figure 6. The currents J0 (x) and jl(xl) flowing on the

wedge surfaces defined by * -0 and --,

respectively. Both currents flow along the z-axis.
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Replacing the Hankel function in (18) by its integral representation [4]

-iw(x-x')+ivIy-y' 2_2
1  ) i e dw; v k- ; Im v>0;

4 0 4wC

R -/x-x') 2 + (yy,) 2

and changing the order of integration leads to the following expressions for
s s

andU:0 1y
s iWU-iwxeiVIYIu (r) f - f dw e - v J (w), and (20a)

0 - 2w iv 0

u - - 2 f -- e 2iv1 J(W1 ), where (20b)
C1

J0(w) f j dxe ijo (x), and (21a)
0

J11(W) " f dx 1 eiWlXlj 1 (x1 )" (21b)
0

We observe from (20) that the component fields u0 and u1 comprising the

scattered field us have the form of inverse Fourier transforms of functions

related to the Fourier transforms of currents J0 and J flowing along the

faces of the wedge. This is one of the results we had been seeking.

Next, we show that the scattered field u can be written as a Fourier

transform of a single quantity which is related to a suitable combination

of the two currents. We begin by introducing an additional change of

variables, defined by

w k cos(a-0), -XlV1 - k sin(-0), where ,- sgn yI. (22)
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* Such a change of variables is equivalent to the enforcement of the coLadition

'i' + vijylj -WXv + vIYI.

*This may be verified by using the relationship

x cosO + ysint, y1  -xsin' + ycost.

*When these changes of variables given in (22) are inserted into (20a) ye get

us L2 fdct ekpoa- j (kcosz), (23)

where P~ is defined in (10a), and

L3 X =-l, X--l,

The contours L 3  L 4 and L 5 are shown in Fig. 7.

_Figure 7. Contours L 3, L 4and L 5in the a plane.
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The contour L3 can be deformed into the contour L(see Fig. 4), the

contour into the contour which coincides with L< but is orientated

along the opposite direction, and the contour L5 into the contour L2.

With these changes, uI can be rewritten as

s -2 da e-ik cos(a)J[kcos(a-0)]. (24)

Using (14) and (23) in (24), we finally obtain

5 iA-ikpco(a-0)~ ~
u -- j da e-J (kcosa) + J [kcos(a-4)]]}. (25)

21 p 2 a

Comparison of this result and (10) gives

W(_) 2 {J (kcosa) + JlEkcos(-4)]1. (26)

This formula is useful for providing a physical interpretation of the

function W(a) in that the scattered field us is a Fourier transform of W(a)

which is related to the transforms of J0 and J1 as shown in (26). Note

that equating the integrands of (10) and (25) is permissible because the

two integral representations for ua are valid for any contour resulting

from the deformation of Px in Fig. 5.

Next we proceed to separate the physical optics (PO) and the fringe

currents in the transform domain. We begin by introducing the function

W(a) which is to be interpreted later as the transform of the fringe current:

-. (a) W(a) - Wp O (a), (27)

4 where WPO(a) is obtained from (26) by replacing Jo and J with J O and
1P0

I respectively, the latter being the transforms of the physical optics
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PO
components of the currents J0 and J1. The physical optics currents J0

PO
and J l are obtained in the usual way from the knowledge of the incident

H-field and are given by

P O W 2ksinO' e-ikxcoso' and jPO(X 2ksin('-O) e-ikxlCO(01-0).

Transforming these using (21), we get

J0 (kcosa) 2 sinO' Im(cosa-coso')>O, and (28a)
0 iWO s cosc-coso'

- x 2 sin(O'-$
1l[kcos(a-0)] - Im(cos(-O)-cos(O'-0)]>0, (28b)iWU Cos(a-O)-Cos(O'-O)'

where ( 1 if the incident wave illuminates the wedge face 0 ,

0 if the wedge face * = $ lies in the shadow region
of the incident wave.

Note that both W(a) given in (11) and W1'0 (a) found from (26) and (28) have

simple poles at ai - ±0' and a - 20-0'. However, by considering the limits

sinO

(ci-o') sn' - -lasc osc-cosO'

(a-O') cosO(a-*'+W)-cosQ -  - as abr',

0sinO' Ia ascosci-cos*'

(-i') cosn(Q+0'+r)-cosQW

(a-2"')'-) - -1 as ac-*20-', and

(a-2"+4') cos(--1-as cos20-''
-.-4 -, ,,,



15

one can show that the singularities in (27) cancel each other out and,

consequently, Wf(a), the transform of the fringe current, is a regular

function. If we replace W(a) in (10) with Wf(a) and apply the method of

stationary phase to the resulting integral, we obtain a field of the order

of (kp) - 1 / 2 which is regular away from the wedge, and includes the shadow

boundaries of the incident and both reflected waves. This field can be

attributed to the fringe current, which is the excess over the PO current

on the surface of the wedge.

7.2 H-wave.

The scattered field for the H-polarization case can be again expressed
by (17), but the function u0 and now becomes

0 1

u°(r) dxY o iR() k

and

u -r f dx1  H H 1 (kIl- xlx1 ) jlxl)

where

jo(x) u(x,y - 0) and Jl(xl) - U(xlY 1 - 0).

The current JO(x) flows along the x-axis and the current jl(xl) along the

negative xI - axis. (Fig. 8)

By applying a procedure similar to the one for the E-wave case, we find

Us x --j f da e- i kicos(a - ) {-- [sina JO(kcosa) - sin(-$) J [kcos(a-0)]]}. (29)
2w P 21 1
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YJ

Figure 8. The currents J0 (x) and j 1 (xl) flowing on

the surfaces * - 0 and * -

Then from (10) and (29) we obtain

WW=) 2i {sin% (kcosa) - sin(a-II)J 1(kcos(a-)] }.

The function W(a) can again be interpreted as a combination of terms related

to the Fourier transform of the currents on the faces of the wedge. All

further observations regarding V(O) continue to remain valid, except that

the expressions for 3P00 and JP-0 are now given by0 1

J 0 (kcoso) 2i 1 Im(cosa-cosO')>O , and

0 ~ k cosa-cos$ 'mcs

j1 kcos(a)] 2i 1 Im[cos(a-O)-cos(,'-$)]>0.1 s- =k cos(c-§)-cos('-O)'

The main result of this section is that we represented the scattered field

u in terms of Fourier transforms of currents flowing along the faces of the

wedge. Even though the transforms are discontinuous functions in the

spectral domain (compare (26) and (11)), the integral representation for the

scattered field (25) remains a uniformly continuous function of the observa-
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tion angle * in its range of variation. Of course, the total field is also

a continuous function of this angle.

In the next section we construct an approximate. uniformly continuous,

asymptotic representation for the total field - one which is expressed in

terms of known functions.

VIII. UNIFORM ASYMPTOTIC EXPRESSION FOR THE TOTAL FIELD U

As a first step toward constructing a uniform asymptotic expression

(UAE), we return to the representation given in (3) for the total field

u(p,$). Next, we manipulate the expressions for the functions w(p,0;0')

and w(p,0,-0') to derive a representation which remains valid for all

observation angles. We begin by considering the function w(p,0;0'). For

the purpose of later manipulation, it is convenient to represent this

function in the form

w(p,0;0') = " q(+'-0)e- ikpcos(0'-$) + Ii(P,0;0') + 12 (p,0;0'), where (30)

e-ikpcos (a-$)

In(P,';0') T L e i (a1-e) da.

n

In order to find its UAE we will employ a technique, described in [4],

which is suitable for an asymptotic analysis of integrals which contain a

simple pole in the neighborhood of the saddle point. According to this

technique, the integral

Xg(ct)4I()- f f(a)e dt
SDP
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with a simple pole at a = a0 and nearby saddle point at a - as , has the

asymptotic expression:

2
Xg( I.--b r ir .I (X~) Ae s {±1avwe- Q (±ibvX) +Aj.T(0)J , mb'0, as X w here

a
* a = lim((a-ao)f(a)]; b - vg(as)-g(a ) ; T(O) hf(a +

-a - a

/ -_ 7 -xh = ,,(a Q(y) = dx,

y

and the sign of H is defined such that arg h = (arg da) , where da is an
aS

element along the steepest descent path SDP, while arg b is defined such

that

01O-a s

b h as a0  as

In our case we have

1

g(a) - -icos(a- ); f(a) = 2 ifl() ; a0 - 0' ' and on L

,@si2 ' C 2WW

2
1Tr 1 1

V e Cos 12

Now w(p,*;*') can be rewritten in the form

w(p,*;*') = n(Imb)e0kP(ao) + I(P,*;*') + 12(,€;0').

.
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Let us assume that the pole a - *' lies near the contour L1. We observe that

Ti

Q(y) - viF(ei4y), where F(z) = ee__' d. is the Fresnel integral, and

V7 z
that F(z) - AT- F(-z). Consequently,

n(Imb)ekpg(O0) -± 12arffekg('0)Q(;ibA) = e°g(a)F( b),

and the sum of the first two terms in (30) have the following UAE:

S(w+ '- ) e - Ik PCs(' ' ) + Ii(p,0;0') el {e F(-/2 cos 02 +

(31)
i;

e 4 0e-4 1'41
+

22-rk cos 02 + 2ik 1-eis(l ') "

Since the pole a = a is away from the contour L2, the contribution to

w(p,0;0') from I2 (P,O; ') can be calculated by applying the standard saddle-

point method, with the result

I 2 (p,$; ') °-i4_______
l(e,0(;0_,) (32)

Upon adding (31) and (32) together, we obtain the needed UAE for the function

w(P,0;0'):

2i2 cos

2

e 4 1sinalw

r'2irk coSQ(0-0') - cosn
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If the pole a0 lies near the contour L2, then the above reasoning can be

repeated with the contours L and L2 interchanged. It can be shown that

the final result is the same.

To find the UAE for the function w(p, ;- '), let us represent it in

the form:

w(pO;-O')= n(,-'-O)e - ikcos(O' + O) + n(r-2 +1'+0)e- ikpco s ( 2 - ' - ) +

(33)
, zl(P¢;-¢')+ I 2 (p,;€)

-ikpcos(a-0)
where In(0,€;-€') = e + da

n

In this case the pole a = -€' appears near the contour L and another

pole a = 20-0' lies near the contour L . Therefore, now we employ the same

technique to the first and the third and to the second and the fourth terms

in (33), respectively, as was used to find (32). The result is

w(p,O;-')"e {e F(_2 cos + e+ 1
242ikp cos 22

e-4 1 e-ikp[l+cos(2*-O'-O)l F(_ 2--cos + (34)

_l7er (1+-)e 2

e 4 1 le- 1

2.2ir-- cos 2/2ikp e) 1-

The sum of (33) and (34) yields the UAE for the total field u. It can be

rewritten as follows:
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0; = -Pcos(O- '); srl = -ocos(4+€'); sr2 = -pcos(2-'-p).

" In the context of ray optics, these quantities are the eiconals of the

* diffracted, incident, and the two reflected waves, respectively. We also

introduce the functions e i, cr and e , which are equal to -1 in the lit

region and +1 in the shadow region. Next we use the notation

i(x2 +)

e 4F(x)=
q x

which is the first term of the asymptotic expansion of F(x), according to

F(x) = n(-x) + F(x) + 0 (x-3).

Then the UAE for the total field u takes the form:

U n u[F(ik(s-si)) - (ik(s-i) )I + {i r I} + {i r } + Ud, (35)

where

eikp+i- -sin1 {[cos[(- ')-cos] I  [cos2(+,')-cosQ7]-lJ. (36)

We note that the expression for the total field u contains ud , given in

(36) which is the diffracted field A la Keller. This diffracted field is

non-uniform in nature as it is singular both at the shadow boundary and in

4 the neighborhood of p = 0. However, the total field given by (35) is uniform

at the shadow boundaries because the singularies in 's appearing in the

first three terms exactly cancel out the singularity in ud. However, such a

cancellation does not occur at p = u. Hence the expression for u in (35)

is still non-uniform at the tip of the wedge; nonetheless, the uniform nature

4I
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is maintained at asymptotic distances away from the tip, i.e., for kp large.

Finally, we point out that the expression in (35) is identical to the

one based on the Deschamps and Lee ansatz [6] which is a generalization of

the uniform formula for the half-plane derived by Ahluwalia, Boersma and

Lewis [7].
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